Cortical counting

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Counting Polynomials of Some Nanostructures

The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.

متن کامل

Curve Counting and Instanton Counting

Intuitively, in four-dimensional gauge theories one counts instantons, and in twodimensional string theory one counts holomorphic curves. These correspond to the instanton counting and curve counting in the title. There is no obvious connection between them, but a remarkable physical idea called geometric engineering [9, 10, 11] dictates that they are indeed related. More precisely, the generat...

متن کامل

Counting or chunking? Mathematical and heuristic abilities in patients with corticobasal syndrome and posterior cortical atrophy.

A growing amount of empirical data is showing that the ability to manipulate quantities in a precise and efficient fashion is rooted in cognitive mechanisms devoted to specific aspects of numbers processing. The analog number system (ANS) has a reasonable representation of quantities up to about 4, and represents larger quantities on the basis of a numerical ratio between quantities. In order t...

متن کامل

Region Counting Distances and Region Counting Circles

The region counting distances, introduced by Demaine, Iacono and Langerman [5], associate to any pair of points p, q the number of items of a dataset S contained in a region R(p, q) surrounding p, q. We define region counting disks and circles, and study the complexity of these objects. In particular, we prove that for some wide class of regions R(p, q), the complexity of a region counting circ...

متن کامل

COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Reviews Neuroscience

سال: 2002

ISSN: 1471-003X,1471-0048

DOI: 10.1038/nrn955